Lecture 9 - Exam I Review

PHYC I6I Fall 2016

Coulomb's Law

- Coulomb's Law: The magnitude of the electric force between two point charges is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.

$$
F=k \frac{\left|q_{1} q_{2}\right|}{r^{2}}
$$

Charges of the same sign repel.

$$
\overrightarrow{\boldsymbol{F}}_{1} \text { on } 2
$$

$$
\overrightarrow{\boldsymbol{F}}_{1 \text { on } 2}=-\overrightarrow{\boldsymbol{F}}_{2 \text { on } 1}
$$

$$
F_{1 \text { on } 2}=F_{2 \text { on } 1}=k \frac{\left|q_{1} q_{2}\right|}{r^{2}}
$$

q_{2}

Q21.3

Three point charges lie at the vertices of an equilateral triangle as shown. All three charges have the same magnitude, but charges \#1 and \#2 are positive $(+q)$ and charge \#3 is negative $(-q)$. The net electric force that charges \#2 and \#3 exert on charge \#1 is in

A. the $+x$-direction.
C. the $+y$-direction.
E. none of the above.

Vector expression for the force on \#1?

Three point charges lie at the vertices of an equilateral triangle as shown. All three charges have the same magnitude, but charges \#1 and \#2 are positive $(+q)$ and charge \#3 is negative $(-q)$. The net electric force that charges \#2 and \#3 exert on charge \#1 is in

Problems

17.33 .. CP A 15.0-g bullet traveling horizontally at $865 \mathrm{~m} / \mathrm{s}$ passes through a tank containing 13.5 kg of water and emerges with a speed of $534 \mathrm{~m} / \mathrm{s}$. What is the maximum temperature increase that the water could have as a result of this event?

Problems

17.111 • DATA As a physicist, you put heat into a $500.0-\mathrm{g}$ solid sample at the rate of $10.0 \mathrm{~kJ} / \mathrm{min}$ while recording its temperature as a function of time. You plot your data as shown in Fig. P17.111. (a) What is the latent heat of fusion for this solid? (b) What are the specific heats of the liquid and solid states of this material?

Figure P17.111 $T\left({ }^{\circ} \mathrm{C}\right)$

Problems

18.16 - Three moles of an ideal gas are in a rigid cubical box with sides of length 0.300 m . (a) What is the force that the gas exerts on each of the six sides of the box when the gas temperature is $20.0^{\circ} \mathrm{C}$? (b) What is the force when the temperature of the gas is increased to $100.0^{\circ} \mathrm{C}$?

Problems

19.6 •A gas undergoes two processes. In the first, the volume remains constant at $0.200 \mathrm{~m}^{3}$ and the pressure increases from $2.00 \times 10^{5} \mathrm{~Pa}$ to $5.00 \times 10^{5} \mathrm{~Pa}$. The second process is a compression to a volume of $0.120 \mathrm{~m}^{3}$ at a constant pressure of $5.00 \times 10^{5} \mathrm{~Pa}$. (a) In a $p V$-diagram, show both processes. (b) Find the total work done by the gas during both processes.

Problems

20.15 - A Carnot engine has an efficiency of 66% and performs $2.5 \times 10^{4} \mathrm{~J}$ of work in each cycle. (a) How much heat does the engine extract from its heat source in each cycle? (b) Suppose the engine exhausts heat at room temperature $\left(20.0^{\circ} \mathrm{C}\right)$. What is the temperature of its heat source?

Problems

$\mathbf{2 0 . 2 5}$ - Three moles of an ideal gas undergo a reversible isothermal compression at $20.0^{\circ} \mathrm{C}$. During this compression, 1850 J of work is done on the gas. What is the change of entropy of the gas?

Phyc161 Exam 1 Review Class
17.33 9/12/16

$$
\Delta K E=\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right) \Rightarrow Q=-\Delta K E
$$

IKE $=$-Work done water = (heat gained) by friction

$$
\begin{aligned}
Q=M c_{w} \Delta T & =-\Delta K E=-\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right) \\
\Delta T & =\frac{-\frac{1}{2} m\left(v_{f}^{2}-v_{i}^{2}\right)}{M c_{w}}
\end{aligned}
$$

17. 111
$\left(C_{S}\right)$ solid specific heat cap.
$M=500 \mathrm{~g}$ solid. $\quad C_{l}=$ liquid.

$$
P=\frac{10 \mathrm{~kJ}}{\min }=\frac{\Delta Q}{\Delta t}=?
$$

\rightarrow Coulomb's Law \rightarrow Vector addition
\rightarrow Heating \rightarrow with $\&$ without phase changes
\rightarrow Ideal Gases / Prousses

Ideal Gas $U \propto U(T)$

$$
\begin{aligned}
\Delta U & =Q-W \\
n C_{V} \Delta t & =n C_{p} \Delta T
\end{aligned}
$$

isochoric

$$
\begin{array}{r}
V=\text { constant } \\
\Delta V=0 \\
W=\int \phi d V^{0}=0
\end{array}
$$

$$
\Delta U=Q=n C_{v} \Delta T
$$

isothermal

$$
\begin{aligned}
T & =\text { constant } \\
\Delta T & =0 \\
\Delta U & =0 \Rightarrow Q=W
\end{aligned}
$$

$$
W=\int p d V
$$

$$
=\int_{V_{i}}^{V_{s}} \frac{n R T}{V} d V=n R T \ln \left(\frac{V_{f}}{V_{i}}\right)
$$

adiabatic \Rightarrow no heat exchanged

- Reversible

$$
\begin{aligned}
& P V^{\gamma}=\text { constant } \\
& T V^{\gamma-1}=\text { constant }
\end{aligned}
$$

18.16

$$
V=l^{3}
$$

Force $=$ pressure \times area

$$
=p l^{2}=\frac{n R T l^{2}}{n l^{3}}=\frac{n R T}{l}
$$

19.6

20.15

$$
e=\frac{66}{100}=\frac{W}{Q_{H}}=1-\frac{T_{C}}{T_{H}}
$$

Refrigenator: $\quad K \equiv \frac{\left|Q_{c}\right|}{W} \neq \frac{1}{e}$
20.25

$$
Q=W=-18505
$$

$$
\Delta S=\frac{Q}{T}=-\frac{1850 \mathrm{~J}}{293 \mathrm{~K}}
$$

Exam 1 Review

$$
9 / 12 / 16
$$

Phye 161

- Coulomb's Law

$$
\bar{F}_{12}=\frac{k q^{2}}{r^{2}}\left[-\cos \left(45^{\circ}\right) \hat{x}-\sin \left(45^{\circ}\right) \hat{y}\right]
$$

$$
\bar{F}_{13}=\frac{k q^{2}}{r^{2}}\left[+\cos \left(45^{\circ}\right) \hat{x}-\sin \left(45^{\circ}\right) \hat{y}\right]
$$

$$
\vec{F}_{\text {HET }}=-\frac{2 k q^{2}}{r^{2}} \sin \left(45^{\circ}\right) \hat{y}
$$

